Enhancement of DNA vaccine efficacy by targeting the xenogeneic human chorionic gonadotropin, survivin and vascular endothelial growth factor receptor 2 combined tumor antigen to the major histocompatibility complex class II pathway.
نویسندگان
چکیده
BACKGROUND A number of strategies have been used to improve the efficacy of the DNA vaccine for the treatment of tumors. These strategies, ranging from activating CD4+ T cell, manipulating antigen presentation and/or processing to anti-angiogenesis, focus on one certain aspect in the functioning of the vaccine. Therefore, their combination is necessary for rational DNA vaccines design by synergizing different regimens and overcoming the limitations of each strategy. METHODS A DNA fragment (HSV) encoding the C terminal 37 amino acids of human chorionic gonadotropin β chain (hCGβ), 5 different HLA-restricted cytotoxic T lymphocyte epitopes from human survivin and the third and fourth extracellular domains of vascular endothelial growth factor receptor 2 (VEGFR2) was inserted into the sequence between the luminal and transmembrane domain of human lysosome-associated membrane protein-1 cDNA for the construction of a novel DNA vaccine. RESULTS This novel vaccine, named p-L/HSV, has a potent antitumor effect on the LL/2 lung carcinoma model in syngeneic C57BL/6 mice. The immunologic mechanism involved in the antitumor effect referred to the activation of both cellular and humoral immune response. In addition, the tumor vasculature was abrogated as observed by immunohistochemistry in p-L/HSV immunized mice. Furthermore, the immunized mice received an additional boost with p-L/HSV 6 months later and showed a strong immune recall response. CONCLUSIONS The present study indicates that the strategies of combining antitumor with antiangiogenesis and targeting the tumor antigen to the major histocompatibility complex class II pathway cooperate well. Such a study may shed new light on designing vaccine for cancer in the future.
منابع مشابه
The Higher Response of Vascular Endothelial Growth Factor and Angiotensin-II to Human Chorionic Gonadotropin in Women with Polycystic Ovary Syndrome
Background This research investigated the response of vascular active factors, vascular endothelial growth factor (VEGF) and angiotensin-II (AT-II) to ovarian stimulation during 24 hours in patients with polycystic ovary syndrome (PCOS). MaterialsAndMethods In this clinical trial study, 52 patients with PCOS and 8 control cases were stimulated with human chorionic gonadotropin (HCG) on the 4th ...
متن کاملAnti-tumor effects of a human VEGFR-2-based DNA vaccine in mouse models
BACKGROUND Vascular endothelial growth factor (VEGF) and its receptor, VEGFR-2 (Flk-1/KDR), play a key role in tumor angiogenesis. Blocking the VEGF-VEGFR-2 pathway may inhibit tumor growth. Here, we used human VEGFR-2 as a model antigen to explore the feasibility of immunotherapy with a plasmid DNA vaccine based on a xenogeneic homologue of this receptor. METHODS The protective effects and t...
متن کاملEnhancing major histocompatibility complex class I antigen presentation by targeting antigen to centrosomes.
Several strategies that increase proteasomal degradation of antigen have been shown to improve MHC class I presentation of antigen. Because recent studies have demonstrated that the centrosome is a subcellular compartment rich in proteasomes, we hypothesized that targeting a tumor antigen to centrosomal compartments would enhance both the MHC class I presentation of antigen and the vaccine pote...
متن کاملIn vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies
Objective(s): Emergence of resistant tumor cells to the current therapeutics is the main hindrance in cancer treatment. Combination therapy, which mixes two or more drugs, is a way to overcome resistant problems of cancer cells to current treatments. Nanobodies are promising tools in cancer therapy due to their high affinity as well as high penetration to tumor sites....
متن کاملDeoxyribonucleic acid (DNA) encoding a pan-major histocompatibility complex class II peptide analogue augmented antigen-specific cellular immunity and suppressive effects on tumor growth elicited by DNA vaccine immunotherapy.
Vaccine immunotherapy must induce helper and cytotoxic cell-mediated immunity to generate the powerful antitumor immune responses needed to suppress cancer progression. We reported previously that a 16-amino acid peptide analogue derived from pigeon cytochrome c can bind broad ranges of MHC class II types and activate helper T cells in mice. To determine whether DNA encoding the Pan-MHC class I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of gene medicine
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2012